Provides controls for traps of MRRS, MRS and MRC reads of System registers.
This register is present only when FEAT_FGT is implemented. Otherwise, direct accesses to HFGRTR_EL2 are UNDEFINED.
If EL2 is not implemented, this register is RES0 from EL3.
HFGRTR_EL2 is a 64-bit register.
Trap MRS reads of AMAIR2_EL1 at EL1 using AArch64 to EL2.
nAMAIR2_EL1 | Meaning |
---|---|
0b0 |
If EL2 is implemented and enabled in the current Security state, and either EL3 is not implemented or SCR_EL3.FGTEn == 1, then MRS reads of AMAIR2_EL1 at EL1 using AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless the read generates a higher priority exception. |
0b1 |
MRS reads of AMAIR2_EL1 are not trapped by this mechanism. |
The reset behavior of this field is:
Reserved, RES0.
Trap MRS reads of MAIR2_EL1 at EL1 using AArch64 to EL2.
nMAIR2_EL1 | Meaning |
---|---|
0b0 |
If EL2 is implemented and enabled in the current Security state, and either EL3 is not implemented or SCR_EL3.FGTEn == 1, then MRS reads of MAIR2_EL1 at EL1 using AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless the read generates a higher priority exception. |
0b1 |
MRS reads of MAIR2_EL1 are not trapped by this mechanism. |
The reset behavior of this field is:
Reserved, RES0.
Trap MRS reads of S2POR_EL1 at EL1 using AArch64 to EL2.
nS2POR_EL1 | Meaning |
---|---|
0b0 |
If EL2 is implemented and enabled in the current Security state, and either EL3 is not implemented or SCR_EL3.FGTEn == 1, then MRS reads of S2POR_EL1 at EL1 using AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless the read generates a higher priority exception. |
0b1 |
MRS reads of S2POR_EL1 are not trapped by this mechanism. |
The reset behavior of this field is:
Reserved, RES0.
Trap MRS reads of POR_EL1 at EL1 using AArch64 to EL2.
nPOR_EL1 | Meaning |
---|---|
0b0 |
If EL2 is implemented and enabled in the current Security state, and either EL3 is not implemented or SCR_EL3.FGTEn == 1, then MRS reads of POR_EL1 at EL1 using AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless the read generates a higher priority exception. |
0b1 |
MRS reads of POR_EL1 are not trapped by this mechanism. |
The reset behavior of this field is:
Reserved, RES0.
Trap MRS reads of POR_EL0 at EL1 and EL0 using AArch64 to EL2.
nPOR_EL0 | Meaning |
---|---|
0b0 |
If EL2 is implemented and enabled in the current Security state, the Effective value of HCR_EL2.{E2H, TGE} is not {1, 1}, and either EL3 is not implemented or SCR_EL3.FGTEn == 1, then MRS reads of POR_EL0 at EL1 and EL0 using AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless the read generates a higher priority exception. |
0b1 |
MRS reads of POR_EL0 are not trapped by this mechanism. |
The reset behavior of this field is:
Reserved, RES0.
Trap MRS reads of PIR_EL1 at EL1 using AArch64 to EL2.
nPIR_EL1 | Meaning |
---|---|
0b0 |
If EL2 is implemented and enabled in the current Security state, and either EL3 is not implemented or SCR_EL3.FGTEn == 1, then MRS reads of PIR_EL1 at EL1 using AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless the read generates a higher priority exception. |
0b1 |
MRS reads of PIR_EL1 are not trapped by this mechanism. |
The reset behavior of this field is:
Reserved, RES0.
Trap MRS reads of PIRE0_EL1 at EL1 using AArch64 to EL2.
nPIRE0_EL1 | Meaning |
---|---|
0b0 |
If EL2 is implemented and enabled in the current Security state, and either EL3 is not implemented or SCR_EL3.FGTEn == 1, then MRS reads of PIRE0_EL1 at EL1 using AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless the read generates a higher priority exception. |
0b1 |
MRS reads of PIRE0_EL1 are not trapped by this mechanism. |
The reset behavior of this field is:
Reserved, RES0.
Trap MRS or MRRS reads of RCWMASK_EL1 at EL1 using AArch64 to EL2.
nRCWMASK_EL1 | Meaning |
---|---|
0b0 |
If EL2 is implemented and enabled in the current Security state, and either EL3 is not implemented or SCR_EL3.FGTEn == 1, then MRS or MRRS reads of RCWMASK_EL1 at EL1 using AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless the read generates a higher priority exception. |
0b1 |
MRS or MRRS reads of RCWMASK_EL1 are not trapped by this mechanism. |
The reset behavior of this field is:
Reserved, RES0.
Trap MRS reads of TPIDR2_EL0 at EL1 and EL0 using AArch64 to EL2.
nTPIDR2_EL0 | Meaning |
---|---|
0b0 |
If EL2 is implemented and enabled in the current Security state, the Effective value of HCR_EL2.{E2H, TGE} is not {1, 1}, and either EL3 is not implemented or SCR_EL3.FGTEn == 1, then MRS reads of TPIDR2_EL0 at EL1 and EL0 using AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless the read generates a higher priority exception. |
0b1 |
MRS reads of TPIDR2_EL0 are not trapped by this mechanism. |
The reset behavior of this field is:
Reserved, RES0.
Trap MRS reads of SMPRI_EL1 at EL1 using AArch64 to EL2.
nSMPRI_EL1 | Meaning |
---|---|
0b0 |
If EL2 is implemented and enabled in the current Security state, and either EL3 is not implemented or SCR_EL3.FGTEn == 1, then MRS reads of SMPRI_EL1 at EL1 using AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless the read generates a higher priority exception. |
0b1 |
MRS reads of SMPRI_EL1 are not trapped by this mechanism. |
The reset behavior of this field is:
Reserved, RES0.
Trap MRS reads of multiple System registers. Enables a trap on MRS reads at EL1 using AArch64 of any of the following AArch64 System registers to EL2:
nGCS_EL1 | Meaning |
---|---|
0b0 |
If EL2 is implemented and enabled in the current Security state, and either EL3 is not implemented or SCR_EL3.FGTEn == 1, then MRS reads at EL1 using AArch64 of any of the specified System registers are trapped to EL2 and reported with EC syndrome value 0x18, unless the read generates a higher priority exception. |
0b1 |
MRS reads of the specified System registers are not trapped by this mechanism. |
The reset behavior of this field is:
Reserved, RES0.
Trap MRS reads of multiple System registers. Enables a trap on MRS reads at EL1 and EL0 using AArch64 of any of the following AArch64 System registers to EL2:
nGCS_EL0 | Meaning |
---|---|
0b0 |
If EL2 is implemented and enabled in the current Security state, the Effective value of HCR_EL2.{E2H, TGE} is not {1, 1}, and either EL3 is not implemented or SCR_EL3.FGTEn == 1, then MRS reads at EL1 and EL0 using AArch64 of any of the specified System registers are trapped to EL2 and reported with EC syndrome value 0x18, unless the read generates a higher priority exception. |
0b1 |
MRS reads of the specified System registers are not trapped by this mechanism. |
The reset behavior of this field is:
Reserved, RES0.
Reserved, RES0.
Trap MRS reads of ACCDATA_EL1 at EL1 using AArch64 to EL2.
nACCDATA_EL1 | Meaning |
---|---|
0b0 |
If EL2 is implemented and enabled in the current Security state, and either EL3 is not implemented or SCR_EL3.FGTEn == 1, then MRS reads of ACCDATA_EL1 at EL1 using AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless the read generates a higher priority exception. |
0b1 |
MRS reads of ACCDATA_EL1 are not trapped by this mechanism. |
The reset behavior of this field is:
Reserved, RES0.
Trap MRS reads of ERXADDR_EL1 at EL1 using AArch64 to EL2.
ERXADDR_EL1 | Meaning |
---|---|
0b0 |
MRS reads of ERXADDR_EL1 are not trapped by this mechanism. |
0b1 |
If EL2 is implemented and enabled in the current Security state, and either EL3 is not implemented or SCR_EL3.FGTEn == 1, then MRS reads of ERXADDR_EL1 at EL1 using AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless the read generates a higher priority exception. |
Accessing this field has the following behavior:
The reset behavior of this field is:
Reserved, RES0.
Trap MRS reads of ERXPFGCDN_EL1 at EL1 using AArch64 to EL2.
ERXPFGCDN_EL1 | Meaning |
---|---|
0b0 |
MRS reads of ERXPFGCDN_EL1 are not trapped by this mechanism. |
0b1 |
If EL2 is implemented and enabled in the current Security state, and either EL3 is not implemented or SCR_EL3.FGTEn == 1, then MRS reads of ERXPFGCDN_EL1 at EL1 using AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless the read generates a higher priority exception. |
Accessing this field has the following behavior:
The reset behavior of this field is:
Reserved, RES0.
Trap MRS reads of ERXPFGCTL_EL1 at EL1 using AArch64 to EL2.
ERXPFGCTL_EL1 | Meaning |
---|---|
0b0 |
MRS reads of ERXPFGCTL_EL1 are not trapped by this mechanism. |
0b1 |
If EL2 is implemented and enabled in the current Security state, and either EL3 is not implemented or SCR_EL3.FGTEn == 1, then MRS reads of ERXPFGCTL_EL1 at EL1 using AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless the read generates a higher priority exception. |
Accessing this field has the following behavior:
The reset behavior of this field is:
Reserved, RES0.
Trap MRS reads of ERXPFGF_EL1 at EL1 using AArch64 to EL2.
ERXPFGF_EL1 | Meaning |
---|---|
0b0 |
MRS reads of ERXPFGF_EL1 are not trapped by this mechanism. |
0b1 |
If EL2 is implemented and enabled in the current Security state, and either EL3 is not implemented or SCR_EL3.FGTEn == 1, then MRS reads of ERXPFGF_EL1 at EL1 using AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless the read generates a higher priority exception. |
Accessing this field has the following behavior:
The reset behavior of this field is:
Reserved, RES0.
Trap MRS reads of multiple System registers. Enables a trap on MRS reads at EL1 using AArch64 of any of the following AArch64 System registers to EL2:
ERXMISCn_EL1 | Meaning |
---|---|
0b0 |
MRS reads of the specified System registers are not trapped by this mechanism. |
0b1 |
If EL2 is implemented and enabled in the current Security state, and either EL3 is not implemented or SCR_EL3.FGTEn == 1, then MRS reads at EL1 using AArch64 of any of the specified System registers are trapped to EL2 and reported with EC syndrome value 0x18, unless the read generates a higher priority exception. |
Accessing this field has the following behavior:
The reset behavior of this field is:
Reserved, RES0.
Trap MRS reads of ERXSTATUS_EL1 at EL1 using AArch64 to EL2.
ERXSTATUS_EL1 | Meaning |
---|---|
0b0 |
MRS reads of ERXSTATUS_EL1 are not trapped by this mechanism. |
0b1 |
If EL2 is implemented and enabled in the current Security state, and either EL3 is not implemented or SCR_EL3.FGTEn == 1, then MRS reads of ERXSTATUS_EL1 at EL1 using AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless the read generates a higher priority exception. |
Accessing this field has the following behavior:
The reset behavior of this field is:
Reserved, RES0.
Trap MRS reads of ERXCTLR_EL1 at EL1 using AArch64 to EL2.
ERXCTLR_EL1 | Meaning |
---|---|
0b0 |
MRS reads of ERXCTLR_EL1 are not trapped by this mechanism. |
0b1 |
If EL2 is implemented and enabled in the current Security state, and either EL3 is not implemented or SCR_EL3.FGTEn == 1, then MRS reads of ERXCTLR_EL1 at EL1 using AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless the read generates a higher priority exception. |
Accessing this field has the following behavior:
The reset behavior of this field is:
Reserved, RES0.
Trap MRS reads of ERXFR_EL1 at EL1 using AArch64 to EL2.
ERXFR_EL1 | Meaning |
---|---|
0b0 |
MRS reads of ERXFR_EL1 are not trapped by this mechanism. |
0b1 |
If EL2 is implemented and enabled in the current Security state, and either EL3 is not implemented or SCR_EL3.FGTEn == 1, then MRS reads of ERXFR_EL1 at EL1 using AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless the read generates a higher priority exception. |
Accessing this field has the following behavior:
The reset behavior of this field is:
Reserved, RES0.
Trap MRS reads of ERRSELR_EL1 at EL1 using AArch64 to EL2.
ERRSELR_EL1 | Meaning |
---|---|
0b0 |
MRS reads of ERRSELR_EL1 are not trapped by this mechanism. |
0b1 |
If EL2 is implemented and enabled in the current Security state, and either EL3 is not implemented or SCR_EL3.FGTEn == 1, then MRS reads of ERRSELR_EL1 at EL1 using AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless the read generates a higher priority exception. |
Accessing this field has the following behavior:
The reset behavior of this field is:
Reserved, RES0.
Trap MRS reads of ERRIDR_EL1 at EL1 using AArch64 to EL2.
ERRIDR_EL1 | Meaning |
---|---|
0b0 |
MRS reads of ERRIDR_EL1 are not trapped by this mechanism. |
0b1 |
If EL2 is implemented and enabled in the current Security state, and either EL3 is not implemented or SCR_EL3.FGTEn == 1, then MRS reads of ERRIDR_EL1 at EL1 using AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless the read generates a higher priority exception. |
Accessing this field has the following behavior:
The reset behavior of this field is:
Reserved, RES0.
Trap MRS reads of ICC_IGRPEN<n>_EL1 at EL1 using AArch64 to EL2.
ICC_IGRPENn_EL1 | Meaning |
---|---|
0b0 |
MRS reads of ICC_IGRPEN<n>_EL1 are not trapped by this mechanism. |
0b1 |
If EL2 is implemented and enabled in the current Security state, and either EL3 is not implemented or SCR_EL3.FGTEn == 1, then MRS reads of ICC_IGRPEN<n>_EL1 at EL1 using AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless the read generates a higher priority exception. |
The reset behavior of this field is:
Reserved, RES0.
Trap MRS reads of VBAR_EL1 at EL1 using AArch64 to EL2.
VBAR_EL1 | Meaning |
---|---|
0b0 |
MRS reads of VBAR_EL1 are not trapped by this mechanism. |
0b1 |
If EL2 is implemented and enabled in the current Security state, and either EL3 is not implemented or SCR_EL3.FGTEn == 1, then MRS reads of VBAR_EL1 at EL1 using AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless the read generates a higher priority exception. |
The reset behavior of this field is:
Trap MRS or MRRS reads of TTBR1_EL1 at EL1 using AArch64 to EL2.
TTBR1_EL1 | Meaning |
---|---|
0b0 |
MRS or MRRS reads of TTBR1_EL1 are not trapped by this mechanism. |
0b1 |
If EL2 is implemented and enabled in the current Security state, and either EL3 is not implemented or SCR_EL3.FGTEn == 1, then MRS or MRRS reads of TTBR1_EL1 at EL1 using AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless the read generates a higher priority exception. |
The reset behavior of this field is:
Trap MRS or MRRS reads of TTBR0_EL1 at EL1 using AArch64 to EL2.
TTBR0_EL1 | Meaning |
---|---|
0b0 |
MRS or MRRS reads of TTBR0_EL1 are not trapped by this mechanism. |
0b1 |
If EL2 is implemented and enabled in the current Security state, and either EL3 is not implemented or SCR_EL3.FGTEn == 1, then MRS or MRRS reads of TTBR0_EL1 at EL1 using AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless the read generates a higher priority exception. |
The reset behavior of this field is:
Trap MRS reads of TPIDR_EL0 at EL1 and EL0 using AArch64 and MRC reads of TPIDRURW at EL0 using AArch32 when EL1 is using AArch64 to EL2.
TPIDR_EL0 | Meaning |
---|---|
0b0 |
MRS reads of TPIDR_EL0 at EL1 and EL0 using AArch64 and MRC reads of TPIDRURW at EL0 using AArch32 are not trapped by this mechanism. |
0b1 | If EL2 is implemented and enabled in the current Security state, the Effective value of HCR_EL2.{E2H, TGE} is not {1, 1}, EL1 is using AArch64, and either EL3 is not implemented or SCR_EL3.FGTEn == 1, then, unless the read generates a higher priority exception: |
The reset behavior of this field is:
Trap MRS reads of TPIDRRO_EL0 at EL1 and EL0 using AArch64 and MRC reads of TPIDRURO at EL0 using AArch32 when EL1 is using AArch64 to EL2.
TPIDRRO_EL0 | Meaning |
---|---|
0b0 |
MRS reads of TPIDRRO_EL0 at EL1 and EL0 using AArch64 and MRC reads of TPIDRURO at EL0 using AArch32 are not trapped by this mechanism. |
0b1 | If EL2 is implemented and enabled in the current Security state, the Effective value of HCR_EL2.{E2H, TGE} is not {1, 1}, EL1 is using AArch64, and either EL3 is not implemented or SCR_EL3.FGTEn == 1, then, unless the read generates a higher priority exception:
|
The reset behavior of this field is:
Trap MRS reads of TPIDR_EL1 at EL1 using AArch64 to EL2.
TPIDR_EL1 | Meaning |
---|---|
0b0 |
MRS reads of TPIDR_EL1 are not trapped by this mechanism. |
0b1 |
If EL2 is implemented and enabled in the current Security state, and either EL3 is not implemented or SCR_EL3.FGTEn == 1, then MRS reads of TPIDR_EL1 at EL1 using AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless the read generates a higher priority exception. |
The reset behavior of this field is:
Trap MRS reads of any of the following registers at EL1 using AArch64 to EL2.
TCR_EL1 | Meaning |
---|---|
0b0 |
MRS reads of the specified System registers are not trapped by this mechanism. |
0b1 |
If EL2 is implemented and enabled in the current Security state, and either EL3 is not implemented or SCR_EL3.FGTEn == 1, then MRS reads of the specified System registers at EL1 using AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless the read generates a higher priority exception. |
The reset behavior of this field is:
Trap MRS reads of SCXTNUM_EL0 at EL1 and EL0 using AArch64 to EL2.
SCXTNUM_EL0 | Meaning |
---|---|
0b0 |
MRS reads of SCXTNUM_EL0 are not trapped by this mechanism. |
0b1 |
If EL2 is implemented and enabled in the current Security state, the Effective value of HCR_EL2.{E2H, TGE} is not {1, 1}, and either EL3 is not implemented or SCR_EL3.FGTEn == 1, then MRS reads of SCXTNUM_EL0 at EL1 and EL0 using AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless the read generates a higher priority exception. |
The reset behavior of this field is:
Reserved, RES0.
Trap MRS reads of SCXTNUM_EL1 at EL1 using AArch64 to EL2.
SCXTNUM_EL1 | Meaning |
---|---|
0b0 |
MRS reads of SCXTNUM_EL1 are not trapped by this mechanism. |
0b1 |
If EL2 is implemented and enabled in the current Security state, and either EL3 is not implemented or SCR_EL3.FGTEn == 1, then MRS reads of SCXTNUM_EL1 at EL1 using AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless the read generates a higher priority exception. |
The reset behavior of this field is:
Reserved, RES0.
Trap MRS reads of any of the following registers at EL1 using AArch64 to EL2.
SCTLR_EL1 | Meaning |
---|---|
0b0 |
MRS reads of the specified System registers are not trapped by this mechanism. |
0b1 |
If EL2 is implemented and enabled in the current Security state, and either EL3 is not implemented or SCR_EL3.FGTEn == 1, then MRS reads of the specified System registers at EL1 using AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless the read generates a higher priority exception. |
The reset behavior of this field is:
Trap MRS reads of REVIDR_EL1 at EL1 using AArch64 to EL2.
REVIDR_EL1 | Meaning |
---|---|
0b0 |
MRS reads of REVIDR_EL1 are not trapped by this mechanism. |
0b1 |
If EL2 is implemented and enabled in the current Security state, and either EL3 is not implemented or SCR_EL3.FGTEn == 1, then MRS reads of REVIDR_EL1 at EL1 using AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless the read generates a higher priority exception. |
The reset behavior of this field is:
Trap MRS or MRRS reads of PAR_EL1 at EL1 using AArch64 to EL2.
PAR_EL1 | Meaning |
---|---|
0b0 |
MRS or MRRS reads of PAR_EL1 are not trapped by this mechanism. |
0b1 |
If EL2 is implemented and enabled in the current Security state, and either EL3 is not implemented or SCR_EL3.FGTEn == 1, then MRS or MRRS reads of PAR_EL1 at EL1 using AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless the read generates a higher priority exception. |
The reset behavior of this field is:
Trap MRS reads of MPIDR_EL1 at EL1 using AArch64 to EL2.
MPIDR_EL1 | Meaning |
---|---|
0b0 |
MRS reads of MPIDR_EL1 are not trapped by this mechanism. |
0b1 |
If EL2 is implemented and enabled in the current Security state, and either EL3 is not implemented or SCR_EL3.FGTEn == 1, then MRS reads of MPIDR_EL1 at EL1 using AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless the read generates a higher priority exception. |
The reset behavior of this field is:
Trap MRS reads of MIDR_EL1 at EL1 using AArch64 to EL2.
MIDR_EL1 | Meaning |
---|---|
0b0 |
MRS reads of MIDR_EL1 are not trapped by this mechanism. |
0b1 |
If EL2 is implemented and enabled in the current Security state, and either EL3 is not implemented or SCR_EL3.FGTEn == 1, then MRS reads of MIDR_EL1 at EL1 using AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless the read generates a higher priority exception. |
The reset behavior of this field is:
Trap MRS reads of MAIR_EL1 at EL1 using AArch64 to EL2.
MAIR_EL1 | Meaning |
---|---|
0b0 |
MRS reads of MAIR_EL1 are not trapped by this mechanism. |
0b1 |
If EL2 is implemented and enabled in the current Security state, and either EL3 is not implemented or SCR_EL3.FGTEn == 1, then MRS reads of MAIR_EL1 at EL1 using AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless the read generates a higher priority exception. |
The reset behavior of this field is:
Trap MRS reads of LORSA_EL1 at EL1 using AArch64 to EL2.
LORSA_EL1 | Meaning |
---|---|
0b0 |
MRS reads of LORSA_EL1 are not trapped by this mechanism. |
0b1 |
If EL2 is implemented and enabled in the current Security state, and either EL3 is not implemented or SCR_EL3.FGTEn == 1, then MRS reads of LORSA_EL1 at EL1 using AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless the read generates a higher priority exception. |
The reset behavior of this field is:
Reserved, RES0.
Trap MRS reads of LORN_EL1 at EL1 using AArch64 to EL2.
LORN_EL1 | Meaning |
---|---|
0b0 |
MRS reads of LORN_EL1 are not trapped by this mechanism. |
0b1 |
If EL2 is implemented and enabled in the current Security state, and either EL3 is not implemented or SCR_EL3.FGTEn == 1, then MRS reads of LORN_EL1 at EL1 using AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless the read generates a higher priority exception. |
The reset behavior of this field is:
Reserved, RES0.
Trap MRS reads of LORID_EL1 at EL1 using AArch64 to EL2.
LORID_EL1 | Meaning |
---|---|
0b0 |
MRS reads of LORID_EL1 are not trapped by this mechanism. |
0b1 |
If EL2 is implemented and enabled in the current Security state, and either EL3 is not implemented or SCR_EL3.FGTEn == 1, then MRS reads of LORID_EL1 at EL1 using AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless the read generates a higher priority exception. |
The reset behavior of this field is:
Reserved, RES0.
Trap MRS reads of LOREA_EL1 at EL1 using AArch64 to EL2.
LOREA_EL1 | Meaning |
---|---|
0b0 |
MRS reads of LOREA_EL1 are not trapped by this mechanism. |
0b1 |
If EL2 is implemented and enabled in the current Security state, and either EL3 is not implemented or SCR_EL3.FGTEn == 1, then MRS reads of LOREA_EL1 at EL1 using AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless the read generates a higher priority exception. |
The reset behavior of this field is:
Reserved, RES0.
Trap MRS reads of LORC_EL1 at EL1 using AArch64 to EL2.
LORC_EL1 | Meaning |
---|---|
0b0 |
MRS reads of LORC_EL1 are not trapped by this mechanism. |
0b1 |
If EL2 is implemented and enabled in the current Security state, and either EL3 is not implemented or SCR_EL3.FGTEn == 1, then MRS reads of LORC_EL1 at EL1 using AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless the read generates a higher priority exception. |
The reset behavior of this field is:
Reserved, RES0.
Trap MRS reads of ISR_EL1 at EL1 using AArch64 to EL2.
ISR_EL1 | Meaning |
---|---|
0b0 |
MRS reads of ISR_EL1 are not trapped by this mechanism. |
0b1 |
If EL2 is implemented and enabled in the current Security state, and either EL3 is not implemented or SCR_EL3.FGTEn == 1, then MRS reads of ISR_EL1 at EL1 using AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless the read generates a higher priority exception. |
The reset behavior of this field is:
Trap MRS reads of FAR_EL1 at EL1 using AArch64 to EL2.
FAR_EL1 | Meaning |
---|---|
0b0 |
MRS reads of FAR_EL1 are not trapped by this mechanism. |
0b1 |
If EL2 is implemented and enabled in the current Security state, and either EL3 is not implemented or SCR_EL3.FGTEn == 1, then MRS reads of FAR_EL1 at EL1 using AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless the read generates a higher priority exception. |
The reset behavior of this field is:
Trap MRS reads of ESR_EL1 at EL1 using AArch64 to EL2.
ESR_EL1 | Meaning |
---|---|
0b0 |
MRS reads of ESR_EL1 are not trapped by this mechanism. |
0b1 |
If EL2 is implemented and enabled in the current Security state, and either EL3 is not implemented or SCR_EL3.FGTEn == 1, then MRS reads of ESR_EL1 at EL1 using AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless the read generates a higher priority exception. |
The reset behavior of this field is:
Trap MRS reads of DCZID_EL0 at EL1 and EL0 using AArch64 to EL2.
DCZID_EL0 | Meaning |
---|---|
0b0 |
MRS reads of DCZID_EL0 are not trapped by this mechanism. |
0b1 |
If EL2 is implemented and enabled in the current Security state, the Effective value of HCR_EL2.{E2H, TGE} is not {1, 1}, and either EL3 is not implemented or SCR_EL3.FGTEn == 1, then MRS reads of DCZID_EL0 at EL1 and EL0 using AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless the read generates a higher priority exception. |
The reset behavior of this field is:
Trap MRS reads of CTR_EL0 at EL1 and EL0 using AArch64 to EL2.
CTR_EL0 | Meaning |
---|---|
0b0 |
MRS reads of CTR_EL0 are not trapped by this mechanism. |
0b1 |
If EL2 is implemented and enabled in the current Security state, the Effective value of HCR_EL2.{E2H, TGE} is not {1, 1}, and either EL3 is not implemented or SCR_EL3.FGTEn == 1, then MRS reads of CTR_EL0 at EL1 and EL0 using AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless the read generates a higher priority exception. |
The reset behavior of this field is:
Trap MRS reads of CSSELR_EL1 at EL1 using AArch64 to EL2.
CSSELR_EL1 | Meaning |
---|---|
0b0 |
MRS reads of CSSELR_EL1 are not trapped by this mechanism. |
0b1 |
If EL2 is implemented and enabled in the current Security state, and either EL3 is not implemented or SCR_EL3.FGTEn == 1, then MRS reads of CSSELR_EL1 at EL1 using AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless the read generates a higher priority exception. |
The reset behavior of this field is:
Trap MRS reads of CPACR_EL1 at EL1 using AArch64 to EL2.
CPACR_EL1 | Meaning |
---|---|
0b0 |
MRS reads of CPACR_EL1 are not trapped by this mechanism. |
0b1 |
If EL2 is implemented and enabled in the current Security state, and either EL3 is not implemented or SCR_EL3.FGTEn == 1, then MRS reads of CPACR_EL1 at EL1 using AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless the read generates a higher priority exception. |
The reset behavior of this field is:
Trap MRS reads of CONTEXTIDR_EL1 at EL1 using AArch64 to EL2.
CONTEXTIDR_EL1 | Meaning |
---|---|
0b0 |
MRS reads of CONTEXTIDR_EL1 are not trapped by this mechanism. |
0b1 |
If EL2 is implemented and enabled in the current Security state, and either EL3 is not implemented or SCR_EL3.FGTEn == 1, then MRS reads of CONTEXTIDR_EL1 at EL1 using AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless the read generates a higher priority exception. |
The reset behavior of this field is:
Trap MRS reads of CLIDR_EL1 at EL1 using AArch64 to EL2.
CLIDR_EL1 | Meaning |
---|---|
0b0 |
MRS reads of CLIDR_EL1 are not trapped by this mechanism. |
0b1 |
If EL2 is implemented and enabled in the current Security state, and either EL3 is not implemented or SCR_EL3.FGTEn == 1, then MRS reads of CLIDR_EL1 at EL1 using AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless the read generates a higher priority exception. |
The reset behavior of this field is:
Trap MRS reads of CCSIDR_EL1 at EL1 using AArch64 to EL2.
CCSIDR_EL1 | Meaning |
---|---|
0b0 |
MRS reads of CCSIDR_EL1 are not trapped by this mechanism. |
0b1 |
If EL2 is implemented and enabled in the current Security state, and either EL3 is not implemented or SCR_EL3.FGTEn == 1, then MRS reads of CCSIDR_EL1 at EL1 using AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless the read generates a higher priority exception. |
The reset behavior of this field is:
Trap MRS reads of multiple System registers. Enables a trap on MRS reads at EL1 using AArch64 of any of the following AArch64 System registers to EL2:
APIBKey | Meaning |
---|---|
0b0 |
MRS reads of the specified System registers are not trapped by this mechanism. |
0b1 |
If EL2 is implemented and enabled in the current Security state, and either EL3 is not implemented or SCR_EL3.FGTEn == 1, then MRS reads at EL1 using AArch64 of any of the specified System registers are trapped to EL2 and reported with EC syndrome value 0x18, unless the read generates a higher priority exception. |
The reset behavior of this field is:
Reserved, RES0.
Trap MRS reads of multiple System registers. Enables a trap on MRS reads at EL1 using AArch64 of any of the following AArch64 System registers to EL2:
APIAKey | Meaning |
---|---|
0b0 |
MRS reads of the specified System registers are not trapped by this mechanism. |
0b1 |
If EL2 is implemented and enabled in the current Security state, and either EL3 is not implemented or SCR_EL3.FGTEn == 1, then MRS reads at EL1 using AArch64 of any of the specified System registers are trapped to EL2 and reported with EC syndrome value 0x18, unless the read generates a higher priority exception. |
The reset behavior of this field is:
Reserved, RES0.
Trap MRS reads of multiple System registers. Enables a trap on MRS reads at EL1 using AArch64 of any of the following AArch64 System registers to EL2:
APGAKey | Meaning |
---|---|
0b0 |
MRS reads of the specified System registers are not trapped by this mechanism. |
0b1 |
If EL2 is implemented and enabled in the current Security state, and either EL3 is not implemented or SCR_EL3.FGTEn == 1, then MRS reads at EL1 using AArch64 of any of the specified System registers are trapped to EL2 and reported with EC syndrome value 0x18, unless the read generates a higher priority exception. |
The reset behavior of this field is:
Reserved, RES0.
Trap MRS reads of multiple System registers. Enables a trap on MRS reads at EL1 using AArch64 of any of the following AArch64 System registers to EL2:
APDBKey | Meaning |
---|---|
0b0 |
MRS reads of the specified System registers are not trapped by this mechanism. |
0b1 |
If EL2 is implemented and enabled in the current Security state, and either EL3 is not implemented or SCR_EL3.FGTEn == 1, then MRS reads at EL1 using AArch64 of any of the specified System registers are trapped to EL2 and reported with EC syndrome value 0x18, unless the read generates a higher priority exception. |
The reset behavior of this field is:
Reserved, RES0.
Trap MRS reads of multiple System registers. Enables a trap on MRS reads at EL1 using AArch64 of any of the following AArch64 System registers to EL2:
APDAKey | Meaning |
---|---|
0b0 |
MRS reads of the specified System registers are not trapped by this mechanism. |
0b1 |
If EL2 is implemented and enabled in the current Security state, and either EL3 is not implemented or SCR_EL3.FGTEn == 1, then MRS reads at EL1 using AArch64 of any of the specified System registers are trapped to EL2 and reported with EC syndrome value 0x18, unless the read generates a higher priority exception. |
The reset behavior of this field is:
Reserved, RES0.
Trap MRS reads of AMAIR_EL1 at EL1 using AArch64 to EL2.
AMAIR_EL1 | Meaning |
---|---|
0b0 |
MRS reads of AMAIR_EL1 are not trapped by this mechanism. |
0b1 |
If EL2 is implemented and enabled in the current Security state, and either EL3 is not implemented or SCR_EL3.FGTEn == 1, then MRS reads of AMAIR_EL1 at EL1 using AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless the read generates a higher priority exception. |
The reset behavior of this field is:
Trap MRS reads of AIDR_EL1 at EL1 using AArch64 to EL2.
AIDR_EL1 | Meaning |
---|---|
0b0 |
MRS reads of AIDR_EL1 are not trapped by this mechanism. |
0b1 |
If EL2 is implemented and enabled in the current Security state, and either EL3 is not implemented or SCR_EL3.FGTEn == 1, then MRS reads of AIDR_EL1 at EL1 using AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless the read generates a higher priority exception. |
The reset behavior of this field is:
Trap MRS reads of AFSR1_EL1 at EL1 using AArch64 to EL2.
AFSR1_EL1 | Meaning |
---|---|
0b0 |
MRS reads of AFSR1_EL1 are not trapped by this mechanism. |
0b1 |
If EL2 is implemented and enabled in the current Security state, and either EL3 is not implemented or SCR_EL3.FGTEn == 1, then MRS reads of AFSR1_EL1 at EL1 using AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless the read generates a higher priority exception. |
The reset behavior of this field is:
Trap MRS reads of AFSR0_EL1 at EL1 using AArch64 to EL2.
AFSR0_EL1 | Meaning |
---|---|
0b0 |
MRS reads of AFSR0_EL1 are not trapped by this mechanism. |
0b1 |
If EL2 is implemented and enabled in the current Security state, and either EL3 is not implemented or SCR_EL3.FGTEn == 1, then MRS reads of AFSR0_EL1 at EL1 using AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless the read generates a higher priority exception. |
The reset behavior of this field is:
Accesses to this register use the following encodings in the System register encoding space:
MRS <Xt>, HFGRTR_EL2
op0 | op1 | CRn | CRm | op2 |
---|---|---|---|---|
0b11 | 0b100 | 0b0001 | 0b0001 | 0b100 |
if PSTATE.EL == EL0 then UNDEFINED; elsif PSTATE.EL == EL1 then if EffectiveHCR_EL2_NVx() IN {'1x1'} then X[t, 64] = NVMem[0x1B8]; elsif EffectiveHCR_EL2_NVx() IN {'xx1'} then AArch64.SystemAccessTrap(EL2, 0x18); else UNDEFINED; elsif PSTATE.EL == EL2 then if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.FGTEn == '0' then UNDEFINED; elsif HaveEL(EL3) && SCR_EL3.FGTEn == '0' then if EL3SDDUndef() then UNDEFINED; else AArch64.SystemAccessTrap(EL3, 0x18); else X[t, 64] = HFGRTR_EL2; elsif PSTATE.EL == EL3 then X[t, 64] = HFGRTR_EL2;
MSR HFGRTR_EL2, <Xt>
op0 | op1 | CRn | CRm | op2 |
---|---|---|---|---|
0b11 | 0b100 | 0b0001 | 0b0001 | 0b100 |
if PSTATE.EL == EL0 then UNDEFINED; elsif PSTATE.EL == EL1 then if EffectiveHCR_EL2_NVx() IN {'1x1'} then NVMem[0x1B8] = X[t, 64]; elsif EffectiveHCR_EL2_NVx() IN {'xx1'} then AArch64.SystemAccessTrap(EL2, 0x18); else UNDEFINED; elsif PSTATE.EL == EL2 then if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.FGTEn == '0' then UNDEFINED; elsif HaveEL(EL3) && SCR_EL3.FGTEn == '0' then if EL3SDDUndef() then UNDEFINED; else AArch64.SystemAccessTrap(EL3, 0x18); else HFGRTR_EL2 = X[t, 64]; elsif PSTATE.EL == EL3 then HFGRTR_EL2 = X[t, 64];