Configures event counter n, where n is 0 to 30.
AArch32 System register PMEVTYPER<n> bits [31:0] are architecturally mapped to AArch64 System register PMEVTYPER<n>_EL0[31:0].
AArch32 System register PMEVTYPER<n> bits [31:0] are architecturally mapped to External register PMU.PMEVTYPER<n>_EL0[31:0].
This register is present only when AArch32 is supported and FEAT_PMUv3 is implemented. Otherwise, direct accesses to PMEVTYPER<n> are UNDEFINED.
PMEVTYPER<n> is a 32-bit register.
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
P | U | NSK | NSU | NSH | RES0 | MT | RES0 | RLU | RES0 | evtCount[15:10] | evtCount[9:0] |
Privileged filtering. Controls counting events in EL1 and, if EL3 is using AArch32, EL3.
P | Meaning |
---|---|
0b0 |
This mechanism has no effect on filtering of events. |
0b1 |
The PE does not count events in EL1 and, if EL3 is using AArch32, EL3. |
If Secure and Non-secure states are implemented, then counting events in Non-secure EL1 is further controlled by PMEVTYPER<n>.NSK.
The reset behavior of this field is:
User filtering. Controls counting events in EL0.
U | Meaning |
---|---|
0b0 |
This mechanism has no effect on filtering of events. |
0b1 |
The PE does not count events in EL0. |
If Secure and Non-secure states are implemented, then counting events in Non-secure EL0 is further controlled by PMEVTYPER<n>.NSU.
If FEAT_RME is implemented, then counting events in Realm EL0 is further controlled by PMEVTYPER<n>.RLU.
The reset behavior of this field is:
Non-secure EL1 filtering. Controls counting events in Non-secure EL1. If PMEVTYPER<n>.NSK is not equal to PMEVTYPER<n>.P, then the PE does not count events in Non-secure EL1. Otherwise, this mechanism has no effect on filtering of events in Non-secure EL1.
NSK | Meaning |
---|---|
0b0 | When PMEVTYPER<n>.P == 0, this mechanism has no effect on filtering of events. When PMEVTYPER<n>.P == 1, the PE does not count events in Non-secure EL1. |
0b1 | When PMEVTYPER<n>.P == 0, the PE does not count events in Non-secure EL1. When PMEVTYPER<n>.P == 1, this mechanism has no effect on filtering of events. |
The reset behavior of this field is:
Reserved, RES0.
Non-secure EL0 filtering. Controls counting events in Non-secure EL0. If PMEVTYPER<n>.NSU is not equal to PMEVTYPER<n>.U, then the PE does not count events in Non-secure EL0. Otherwise, this mechanism has no effect on filtering of events in Non-secure EL0.
NSU | Meaning |
---|---|
0b0 | When PMEVTYPER<n>.U == 0, this mechanism has no effect on filtering of events. When PMEVTYPER<n>.U == 1, the PE does not count events in Non-secure EL0. |
0b1 | When PMEVTYPER<n>.U == 0, the PE does not count events in Non-secure EL0. When PMEVTYPER<n>.U == 1, this mechanism has no effect on filtering of events. |
The reset behavior of this field is:
Reserved, RES0.
EL2 filtering. Controls counting events in EL2.
NSH | Meaning |
---|---|
0b0 |
The PE does not count events in EL2. |
0b1 |
This mechanism has no effect on filtering of events. |
If EL3 is implemented and FEAT_SEL2 is implemented, then counting events in Secure EL2 is further controlled by PMEVTYPER<n>.SH.
The reset behavior of this field is:
Reserved, RES0.
Reserved, RES0.
Multithreading.
MT | Meaning |
---|---|
0b0 |
Count events only on controlling PE. |
0b1 |
Count events from any PE with the same affinity at level 1 and above as this PE. |
From Armv8.6, the IMPLEMENTATION DEFINED multi-threaded PMU extension is not permitted, meaning if FEAT_MTPMU is not implemented, this field is RES0. See ID_DFR1.MTPMU.
This field is ignored by the PE and treated as zero when FEAT_MTPMU is implemented and disabled.
The reset behavior of this field is:
Reserved, RES0.
Reserved, RES0.
Realm EL0 filtering. Controls counting events in Realm EL0. If PMEVTYPER<n>.RLU is not equal to PMEVTYPER<n>.U, then the PE does not count events in Realm EL0. Otherwise, this mechanism has no effect on filtering of events in Realm EL0.
RLU | Meaning |
---|---|
0b0 | When PMEVTYPER<n>.U == 0, this mechanism has no effect on filtering of events. When PMEVTYPER<n>.U == 1, the PE does not count events in Realm EL0. |
0b1 | When PMEVTYPER<n>.U == 0, the PE does not count events in Realm EL0. When PMEVTYPER<n>.U == 1, this mechanism has no effect on filtering of events. |
The reset behavior of this field is:
Reserved, RES0.
Reserved, RES0.
Extension to evtCount[9:0]. For more information, see evtCount[9:0].
The reset behavior of this field is:
Reserved, RES0.
Event to count.
The event number of the event that is counted by event counter PMEVCNTR<n>.
The ranges of event numbers allocated to each type of event are shown in 'Allocation of the PMU event number space'.
If FEAT_PMUv3p8 is implemented and PMEVTYPER<n>.evtCount is programmed to an event that is reserved or not supported by the PE, no events are counted and the value returned by a direct or external read of the PMEVTYPER<n>.evtCount field is the value written to the field.
Arm recommends this behavior for all implementations of FEAT_PMUv3.
Otherwise, if PMEVTYPER<n>.evtCount is programmed to an event that is reserved or not supported by the PE, the behavior depends on the value written:
UNPREDICTABLE means the event must not expose privileged information.
The reset behavior of this field is:
PMEVTYPER<n> can also be accessed by using PMXEVTYPER with PMSELR.SEL set to n.
If FEAT_FGT is implemented and <n> is greater than or equal to the number of accessible event counters, then the behavior of permitted reads and writes of PMEVTYPER<n> is as follows:
If FEAT_FGT is not implemented and <n> is greater than or equal to the number of accessible event counters, then reads and writes of PMEVTYPER<n> are CONSTRAINED UNPREDICTABLE, and the following behaviors are permitted:
Permitted reads and writes of PMEVTYPER<n> are RAZ/WI if all of the following are true:
Permitted writes of PMEVTYPER<n> are ignored if all of the following are true:
In EL0, an access is permitted if it is enabled by PMUSERENR.EN or PMUSERENR_EL0.{UEN,EN}.
If EL2 is implemented and enabled in the current Security state, at EL0 and EL1:
Otherwise, the number of accessible event counters is the number of implemented event counters. For more information, see HDCR.HPMN and MDCR_EL2.HPMN.
Accesses to this register use the following encodings in the System register encoding space:
MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>} ; Where m = 0-30
coproc | opc1 | CRn | CRm | opc2 |
---|---|---|---|---|
0b1111 | 0b000 | 0b1110 | 0b11:m[4:3] | m[2:0] |
integer m = UInt(CRm<1:0>:opc2<2:0>); if m >= NUM_PMU_COUNTERS then if IsFeatureImplemented(FEAT_FGT) then UNDEFINED; else ConstrainUnpredictableProcedure(Unpredictable_PMUEVENTCOUNTER); elsif PSTATE.EL == EL0 then if HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then UNDEFINED; elsif !ELUsingAArch32(EL1) && (PMUSERENR_EL0.EN == '0' && (!IsFeatureImplemented(FEAT_PMUv3p9) || PMUSERENR_EL0.UEN == '0')) then if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then AArch64.AArch32SystemAccessTrap(EL2, 0x03); else AArch64.AArch32SystemAccessTrap(EL1, 0x03); elsif ELUsingAArch32(EL1) && PMUSERENR.EN == '0' then if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then AArch64.AArch32SystemAccessTrap(EL2, 0x03); elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then AArch32.TakeHypTrapException(0x00); else UNDEFINED; elsif EL2Enabled() && !ELUsingAArch32(EL1) && !ELIsInHost(EL0) && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HDFGRTR_EL2.PMEVTYPERn_EL0 == '1' then AArch64.AArch32SystemAccessTrap(EL2, 0x03); elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPM == '1' then AArch64.AArch32SystemAccessTrap(EL2, 0x03); elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TPM == '1' then AArch32.TakeHypTrapException(0x03); elsif EL2Enabled() && m >= GetNumEventCountersAccessible() then if !IsFeatureImplemented(FEAT_FGT) then ConstrainUnpredictableProcedure(Unpredictable_PMUEVENTCOUNTER); elsif ELUsingAArch32(EL1) then AArch32.TakeHypTrapException(0x03); else AArch64.AArch32SystemAccessTrap(EL2, 0x03); elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then if EL3SDDUndef() then UNDEFINED; else AArch64.AArch32SystemAccessTrap(EL3, 0x03); else R[t] = PMEVTYPER[m]; elsif PSTATE.EL == EL1 then if HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then UNDEFINED; elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPM == '1' then AArch64.AArch32SystemAccessTrap(EL2, 0x03); elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TPM == '1' then AArch32.TakeHypTrapException(0x03); elsif EL2Enabled() && m >= GetNumEventCountersAccessible() then if !IsFeatureImplemented(FEAT_FGT) then ConstrainUnpredictableProcedure(Unpredictable_PMUEVENTCOUNTER); elsif ELUsingAArch32(EL2) then AArch32.TakeHypTrapException(0x03); else AArch64.AArch32SystemAccessTrap(EL2, 0x03); elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then if EL3SDDUndef() then UNDEFINED; else AArch64.AArch32SystemAccessTrap(EL3, 0x03); else R[t] = PMEVTYPER[m]; elsif PSTATE.EL == EL2 then if HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then UNDEFINED; elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then if EL3SDDUndef() then UNDEFINED; else AArch64.AArch32SystemAccessTrap(EL3, 0x03); else R[t] = PMEVTYPER[m]; elsif PSTATE.EL == EL3 then R[t] = PMEVTYPER[m];
MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>} ; Where m = 0-30
coproc | opc1 | CRn | CRm | opc2 |
---|---|---|---|---|
0b1111 | 0b000 | 0b1110 | 0b11:m[4:3] | m[2:0] |
integer m = UInt(CRm<1:0>:opc2<2:0>); if m >= NUM_PMU_COUNTERS then if IsFeatureImplemented(FEAT_FGT) then UNDEFINED; else ConstrainUnpredictableProcedure(Unpredictable_PMUEVENTCOUNTER); elsif PSTATE.EL == EL0 then if HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then UNDEFINED; elsif !ELUsingAArch32(EL1) && (PMUSERENR_EL0.EN == '0' && (!IsFeatureImplemented(FEAT_PMUv3p9) || PMUSERENR_EL0.UEN == '0')) then if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then AArch64.AArch32SystemAccessTrap(EL2, 0x03); else AArch64.AArch32SystemAccessTrap(EL1, 0x03); elsif ELUsingAArch32(EL1) && PMUSERENR.EN == '0' then if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then AArch64.AArch32SystemAccessTrap(EL2, 0x03); elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then AArch32.TakeHypTrapException(0x00); else UNDEFINED; elsif EL2Enabled() && !ELUsingAArch32(EL1) && !ELIsInHost(EL0) && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HDFGWTR_EL2.PMEVTYPERn_EL0 == '1' then AArch64.AArch32SystemAccessTrap(EL2, 0x03); elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPM == '1' then AArch64.AArch32SystemAccessTrap(EL2, 0x03); elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TPM == '1' then AArch32.TakeHypTrapException(0x03); elsif EL2Enabled() && m >= GetNumEventCountersAccessible() then if !IsFeatureImplemented(FEAT_FGT) then ConstrainUnpredictableProcedure(Unpredictable_PMUEVENTCOUNTER); elsif ELUsingAArch32(EL1) then AArch32.TakeHypTrapException(0x03); else AArch64.AArch32SystemAccessTrap(EL2, 0x03); elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then if EL3SDDUndef() then UNDEFINED; else AArch64.AArch32SystemAccessTrap(EL3, 0x03); else PMEVTYPER[m] = R[t]; elsif PSTATE.EL == EL1 then if HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then UNDEFINED; elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPM == '1' then AArch64.AArch32SystemAccessTrap(EL2, 0x03); elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TPM == '1' then AArch32.TakeHypTrapException(0x03); elsif EL2Enabled() && m >= GetNumEventCountersAccessible() then if !IsFeatureImplemented(FEAT_FGT) then ConstrainUnpredictableProcedure(Unpredictable_PMUEVENTCOUNTER); elsif ELUsingAArch32(EL2) then AArch32.TakeHypTrapException(0x03); else AArch64.AArch32SystemAccessTrap(EL2, 0x03); elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then if EL3SDDUndef() then UNDEFINED; else AArch64.AArch32SystemAccessTrap(EL3, 0x03); else PMEVTYPER[m] = R[t]; elsif PSTATE.EL == EL2 then if HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then UNDEFINED; elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then if EL3SDDUndef() then UNDEFINED; else AArch64.AArch32SystemAccessTrap(EL3, 0x03); else PMEVTYPER[m] = R[t]; elsif PSTATE.EL == EL3 then PMEVTYPER[m] = R[t];