← Home

PMEVCNTR<n>_EL0: Performance Monitors Event Count Registers, n = 0 - 30

Purpose

Holds event counter n, which counts events, where n is 0 to 30.

Configuration

AArch64 System register PMEVCNTR<n>_EL0 bits [31:0] are architecturally mapped to AArch32 System register PMEVCNTR<n>[31:0].

AArch64 System register PMEVCNTR<n>_EL0 bits [31:0] are architecturally mapped to External register PMU.PMEVCNTR<n>_EL0[31:0].

AArch64 System register PMEVCNTR<n>_EL0 bits [63:32] are architecturally mapped to External register PMU.PMEVCNTR<n>_EL0[63:32] when FEAT_PMUv3p5 is implemented.

This register is present only when FEAT_PMUv3 is implemented. Otherwise, direct accesses to PMEVCNTR<n>_EL0 are UNDEFINED.

Attributes

PMEVCNTR<n>_EL0 is a 64-bit register.

Field descriptions

When FEAT_PMUv3p5 is implemented:

6362616059585756555453525150494847464544434241403938373635343332
313029282726252423222120191817161514131211109876543210
Event counter n
Event counter n

Bits [63:0]

Event counter n. Value of event counter n, where n is the number of this register and is a number from 0 to 30.

The reset behavior of this field is:

Otherwise:

6362616059585756555453525150494847464544434241403938373635343332
313029282726252423222120191817161514131211109876543210
RES0
Event counter n

Bits [63:32]

Reserved, RES0.

Bits [31:0]

Event counter n. Value of event counter n, where n is the number of this register and is a number from 0 to 30.

The reset behavior of this field is:

Accessing PMEVCNTR<n>_EL0

PMEVCNTR<n>_EL0 can also be accessed by using PMXEVCNTR_EL0 with PMSELR_EL0.SEL set to the value of <n>.

If FEAT_FGT is implemented and <n> is greater than or equal to the number of accessible event counters, then the behavior of permitted reads and writes of PMEVCNTR<n>_EL0 is as follows:

If FEAT_FGT is not implemented and <n> is greater than or equal to the number of accessible event counters, then reads and writes of PMEVCNTR<n>_EL0 are CONSTRAINED UNPREDICTABLE, and the following behaviors are permitted:

Permitted reads and writes of PMEVCNTR<n>_EL0 are RAZ/WI if all of the following are true:

Permitted writes of PMEVCNTR<n>_EL0 are ignored if all of the following are true:

Note

In EL0, an access is permitted if it is enabled by PMUSERENR_EL0.{UEN,ER,EN}.

If EL2 is implemented and enabled in the current Security state, in EL1 and EL0, MDCR_EL2.HPMN identifies the number of accessible event counters. Otherwise, the number of accessible event counters is the number of implemented event counters. For more information, see MDCR_EL2.HPMN.

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, PMEVCNTR<m>_EL0 ; Where m = 0-30

op0op1CRnCRmop2
0b110b0110b11100b10:m[4:3]m[2:0]

integer m = UInt(CRm<1:0>:op2<2:0>); if m >= NUM_PMU_COUNTERS then if IsFeatureImplemented(FEAT_FGT) then UNDEFINED; else ConstrainUnpredictableProcedure(Unpredictable_PMUEVENTCOUNTER); elsif PSTATE.EL == EL0 then if HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.TPM == '1' then UNDEFINED; elsif (IsFeatureImplemented(FEAT_PMUv3p9) && PMUSERENR_EL0.<UEN,ER,EN> == '000') || (!IsFeatureImplemented(FEAT_PMUv3p9) && PMUSERENR_EL0.<ER,EN> == '00') then if EL2Enabled() && HCR_EL2.TGE == '1' then AArch64.SystemAccessTrap(EL2, 0x18); else AArch64.SystemAccessTrap(EL1, 0x18); elsif EL2Enabled() && !ELIsInHost(EL0) && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HDFGRTR_EL2.PMEVCNTRn_EL0 == '1' then AArch64.SystemAccessTrap(EL2, 0x18); elsif EL2Enabled() && MDCR_EL2.TPM == '1' then AArch64.SystemAccessTrap(EL2, 0x18); elsif EL2Enabled() && m >= GetNumEventCountersAccessible() then if !IsFeatureImplemented(FEAT_FGT) then ConstrainUnpredictableProcedure(Unpredictable_PMUEVENTCOUNTER); else AArch64.SystemAccessTrap(EL2, 0x18); elsif HaveEL(EL3) && MDCR_EL3.TPM == '1' then if EL3SDDUndef() then UNDEFINED; else AArch64.SystemAccessTrap(EL3, 0x18); else X[t, 64] = PMEVCNTR_EL0[m]; elsif PSTATE.EL == EL1 then if HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.TPM == '1' then UNDEFINED; elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HDFGRTR_EL2.PMEVCNTRn_EL0 == '1' then AArch64.SystemAccessTrap(EL2, 0x18); elsif EL2Enabled() && MDCR_EL2.TPM == '1' then AArch64.SystemAccessTrap(EL2, 0x18); elsif EL2Enabled() && m >= GetNumEventCountersAccessible() then if !IsFeatureImplemented(FEAT_FGT) then ConstrainUnpredictableProcedure(Unpredictable_PMUEVENTCOUNTER); else AArch64.SystemAccessTrap(EL2, 0x18); elsif HaveEL(EL3) && MDCR_EL3.TPM == '1' then if EL3SDDUndef() then UNDEFINED; else AArch64.SystemAccessTrap(EL3, 0x18); else X[t, 64] = PMEVCNTR_EL0[m]; elsif PSTATE.EL == EL2 then if HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.TPM == '1' then UNDEFINED; elsif HaveEL(EL3) && MDCR_EL3.TPM == '1' then if EL3SDDUndef() then UNDEFINED; else AArch64.SystemAccessTrap(EL3, 0x18); else X[t, 64] = PMEVCNTR_EL0[m]; elsif PSTATE.EL == EL3 then X[t, 64] = PMEVCNTR_EL0[m];

MSR PMEVCNTR<m>_EL0, <Xt> ; Where m = 0-30

op0op1CRnCRmop2
0b110b0110b11100b10:m[4:3]m[2:0]

integer m = UInt(CRm<1:0>:op2<2:0>); if m >= NUM_PMU_COUNTERS then if IsFeatureImplemented(FEAT_FGT) then UNDEFINED; else ConstrainUnpredictableProcedure(Unpredictable_PMUEVENTCOUNTER); elsif PSTATE.EL == EL0 then if HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.TPM == '1' then UNDEFINED; elsif PMUSERENR_EL0.EN == '0' && (!IsFeatureImplemented(FEAT_PMUv3p9) || PMUSERENR_EL0.UEN == '0') then if EL2Enabled() && HCR_EL2.TGE == '1' then AArch64.SystemAccessTrap(EL2, 0x18); else AArch64.SystemAccessTrap(EL1, 0x18); elsif EL2Enabled() && !ELIsInHost(EL0) && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HDFGWTR_EL2.PMEVCNTRn_EL0 == '1' then AArch64.SystemAccessTrap(EL2, 0x18); elsif EL2Enabled() && MDCR_EL2.TPM == '1' then AArch64.SystemAccessTrap(EL2, 0x18); elsif EL2Enabled() && m >= GetNumEventCountersAccessible() then if !IsFeatureImplemented(FEAT_FGT) then ConstrainUnpredictableProcedure(Unpredictable_PMUEVENTCOUNTER); else AArch64.SystemAccessTrap(EL2, 0x18); elsif HaveEL(EL3) && MDCR_EL3.TPM == '1' then if EL3SDDUndef() then UNDEFINED; else AArch64.SystemAccessTrap(EL3, 0x18); else PMEVCNTR_EL0[m] = X[t, 64]; elsif PSTATE.EL == EL1 then if HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.TPM == '1' then UNDEFINED; elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HDFGWTR_EL2.PMEVCNTRn_EL0 == '1' then AArch64.SystemAccessTrap(EL2, 0x18); elsif EL2Enabled() && MDCR_EL2.TPM == '1' then AArch64.SystemAccessTrap(EL2, 0x18); elsif EL2Enabled() && m >= GetNumEventCountersAccessible() then if !IsFeatureImplemented(FEAT_FGT) then ConstrainUnpredictableProcedure(Unpredictable_PMUEVENTCOUNTER); else AArch64.SystemAccessTrap(EL2, 0x18); elsif HaveEL(EL3) && MDCR_EL3.TPM == '1' then if EL3SDDUndef() then UNDEFINED; else AArch64.SystemAccessTrap(EL3, 0x18); else PMEVCNTR_EL0[m] = X[t, 64]; elsif PSTATE.EL == EL2 then if HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.TPM == '1' then UNDEFINED; elsif HaveEL(EL3) && MDCR_EL3.TPM == '1' then if EL3SDDUndef() then UNDEFINED; else AArch64.SystemAccessTrap(EL3, 0x18); else PMEVCNTR_EL0[m] = X[t, 64]; elsif PSTATE.EL == EL3 then PMEVCNTR_EL0[m] = X[t, 64];