← Home

DBGDTR_EL0: Debug Data Transfer Register, half-duplex

Purpose

Transfers 64 bits of data between the PE and an external debugger. Can transfer both ways using only a single register.

Configuration

AArch64 System register DBGDTR_EL0 bits [63:32] are architecturally mapped to AArch32 System register DBGDTRRXint[31:0] when written.

AArch64 System register DBGDTR_EL0 bits [63:32] are architecturally mapped to External register DBGDTRRX_EL0[31:0] when written.

AArch64 System register DBGDTR_EL0 bits [63:32] are architecturally mapped to AArch64 System register DBGDTRRX_EL0[31:0] when written.

AArch64 System register DBGDTR_EL0 bits [31:0] are architecturally mapped to AArch32 System register DBGDTRTXint[31:0] when written.

AArch64 System register DBGDTR_EL0 bits [31:0] are architecturally mapped to External register DBGDTRTX_EL0[31:0] when written.

AArch64 System register DBGDTR_EL0 bits [31:0] are architecturally mapped to AArch64 System register DBGDTRTX_EL0[31:0] when written.

AArch64 System register DBGDTR_EL0 bits [63:32] are architecturally mapped to AArch32 System register DBGDTRTXint[31:0] when read.

AArch64 System register DBGDTR_EL0 bits [63:32] are architecturally mapped to External register DBGDTRTX_EL0[31:0] when read.

AArch64 System register DBGDTR_EL0 bits [63:32] are architecturally mapped to AArch64 System register DBGDTRTX_EL0[31:0] when read.

AArch64 System register DBGDTR_EL0 bits [31:0] are architecturally mapped to AArch32 System register DBGDTRRXint[31:0] when read.

AArch64 System register DBGDTR_EL0 bits [31:0] are architecturally mapped to External register DBGDTRRX_EL0[31:0] when read.

AArch64 System register DBGDTR_EL0 bits [31:0] are architecturally mapped to AArch64 System register DBGDTRRX_EL0[31:0] when read.

Attributes

DBGDTR_EL0 is a 64-bit register.

Field descriptions

6362616059585756555453525150494847464544434241403938373635343332
313029282726252423222120191817161514131211109876543210
HighWord
LowWord

HighWord, bits [63:32]

Writes to this register set DTRRX to the value in this field and do not change RXfull.

Reads of this register:

After the read, RXfull is cleared to 0.

LowWord, bits [31:0]

Writes to this register set DTRTX to the value in this field and set TXfull to 1.

Reads of this register:

After the read, RXfull is cleared to 0.

Accessing DBGDTR_EL0

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, DBGDTR_EL0

op0op1CRnCRmop2
0b100b0110b00000b01000b000

if Halted() then X[t, 64] = Read_DBGDTR_EL0(64); elsif PSTATE.EL == EL0 then if MDSCR_EL1.TDCC == '1' then if EL2Enabled() && HCR_EL2.TGE == '1' then AArch64.SystemAccessTrap(EL2, 0x18); else AArch64.SystemAccessTrap(EL1, 0x18); elsif EL2Enabled() && MDCR_EL2.TDCC == '1' then AArch64.SystemAccessTrap(EL2, 0x18); elsif EL2Enabled() && (HCR_EL2.TGE == '1' || MDCR_EL2.<TDE,TDA> != '00') then AArch64.SystemAccessTrap(EL2, 0x18); elsif HaveEL(EL3) && MDCR_EL3.TDCC == '1' then AArch64.SystemAccessTrap(EL3, 0x18); elsif HaveEL(EL3) && MDCR_EL3.TDA == '1' then AArch64.SystemAccessTrap(EL3, 0x18); else X[t, 64] = Read_DBGDTR_EL0(64); elsif PSTATE.EL == EL1 then if EL2Enabled() && MDCR_EL2.TDCC == '1' then AArch64.SystemAccessTrap(EL2, 0x18); elsif EL2Enabled() && MDCR_EL2.<TDE,TDA> != '00' then AArch64.SystemAccessTrap(EL2, 0x18); elsif HaveEL(EL3) && MDCR_EL3.TDCC == '1' then AArch64.SystemAccessTrap(EL3, 0x18); elsif HaveEL(EL3) && MDCR_EL3.TDA == '1' then AArch64.SystemAccessTrap(EL3, 0x18); else X[t, 64] = Read_DBGDTR_EL0(64); elsif PSTATE.EL == EL2 then if HaveEL(EL3) && MDCR_EL3.TDCC == '1' then AArch64.SystemAccessTrap(EL3, 0x18); elsif HaveEL(EL3) && MDCR_EL3.TDA == '1' then AArch64.SystemAccessTrap(EL3, 0x18); else X[t, 64] = Read_DBGDTR_EL0(64); elsif PSTATE.EL == EL3 then X[t, 64] = Read_DBGDTR_EL0(64);

MSR DBGDTR_EL0, <Xt>

op0op1CRnCRmop2
0b100b0110b00000b01000b000

if Halted() then Write_DBGDTR_EL0(X[t, 64]); elsif PSTATE.EL == EL0 then if MDSCR_EL1.TDCC == '1' then if EL2Enabled() && HCR_EL2.TGE == '1' then AArch64.SystemAccessTrap(EL2, 0x18); else AArch64.SystemAccessTrap(EL1, 0x18); elsif EL2Enabled() && MDCR_EL2.TDCC == '1' then AArch64.SystemAccessTrap(EL2, 0x18); elsif EL2Enabled() && (HCR_EL2.TGE == '1' || MDCR_EL2.<TDE,TDA> != '00') then AArch64.SystemAccessTrap(EL2, 0x18); elsif HaveEL(EL3) && MDCR_EL3.TDCC == '1' then AArch64.SystemAccessTrap(EL3, 0x18); elsif HaveEL(EL3) && MDCR_EL3.TDA == '1' then AArch64.SystemAccessTrap(EL3, 0x18); else Write_DBGDTR_EL0(X[t, 64]); elsif PSTATE.EL == EL1 then if EL2Enabled() && MDCR_EL2.TDCC == '1' then AArch64.SystemAccessTrap(EL2, 0x18); elsif EL2Enabled() && MDCR_EL2.<TDE,TDA> != '00' then AArch64.SystemAccessTrap(EL2, 0x18); elsif HaveEL(EL3) && MDCR_EL3.TDCC == '1' then AArch64.SystemAccessTrap(EL3, 0x18); elsif HaveEL(EL3) && MDCR_EL3.TDA == '1' then AArch64.SystemAccessTrap(EL3, 0x18); else Write_DBGDTR_EL0(X[t, 64]); elsif PSTATE.EL == EL2 then if HaveEL(EL3) && MDCR_EL3.TDCC == '1' then AArch64.SystemAccessTrap(EL3, 0x18); elsif HaveEL(EL3) && MDCR_EL3.TDA == '1' then AArch64.SystemAccessTrap(EL3, 0x18); else Write_DBGDTR_EL0(X[t, 64]); elsif PSTATE.EL == EL3 then Write_DBGDTR_EL0(X[t, 64]);