Describes the features provided by the AArch32 Advanced SIMD and Floating-point implementation.
Must be interpreted with MVFR0 and MVFR1.
For general information about the interpretation of the ID registers see 'Principles of the ID scheme for fields in ID registers'.
AArch32 System register MVFR2 bits [31:0] are architecturally mapped to AArch64 System register MVFR2_EL1[31:0].
This register is present only when EL1 is capable of using AArch32. Otherwise, direct accesses to MVFR2 are UNDEFINED.
Implemented only if the implementation includes Advanced SIMD and floating-point instructions.
MVFR2 is a 32-bit register.
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
RES0 | FPMisc | SIMDMisc |
Reserved, RES0.
Indicates whether the floating-point implementation provides support for miscellaneous VFP features.
FPMisc | Meaning |
---|---|
0b0000 |
Not implemented, or no support for miscellaneous features. |
0b0001 |
Support for Floating-point selection. |
0b0010 |
As 0b0001, and Floating-point Conversion to Integer with Directed Rounding modes. |
0b0011 |
As 0b0010, and Floating-point Round to Integer Floating-point. |
0b0100 |
As 0b0011, and Floating-point MaxNum and MinNum. |
All other values are reserved.
In Armv8-A, the permitted values are 0b0000 and 0b0100.
Indicates whether the Advanced SIMD implementation provides support for miscellaneous Advanced SIMD features.
SIMDMisc | Meaning |
---|---|
0b0000 |
Not implemented, or no support for miscellaneous features. |
0b0001 |
Floating-point Conversion to Integer with Directed Rounding modes. |
0b0010 |
As 0b0001, and Floating-point Round to Integer Floating-point. |
0b0011 |
As 0b0010, and Floating-point MaxNum and MinNum. |
All other values are reserved.
In Armv8-A, the permitted values are 0b0000 and 0b0011.
Accesses to this register use the following encodings in the System register encoding space:
VMRS{<c>}{<q>} <Rt>, <spec_reg>
reg |
---|
0b0101 |
if PSTATE.EL == EL0 then UNDEFINED; elsif PSTATE.EL == EL1 then if HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && CPTR_EL3.TFP == '1' then UNDEFINED; elsif (ELUsingAArch32(EL3) && SCR.NS == '1' && NSACR.cp10 == '0') || CPACR.cp10 == '00' then UNDEFINED; elsif EL2Enabled() && !ELUsingAArch32(EL2) && !ELIsInHost(EL2) && CPTR_EL2.TFP == '1' then AArch64.AArch32SystemAccessTrap(EL2, 0x07); elsif ELIsInHost(EL2) && CPTR_EL2.FPEN == 'x0' then AArch64.AArch32SystemAccessTrap(EL2, 0x07); elsif EL2Enabled() && ELUsingAArch32(EL2) && ((ELUsingAArch32(EL3) && SCR.NS == '1' && NSACR.cp10 == '0') || HCPTR.TCP10 == '1') then AArch32.TakeHypTrapException(0x08); elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TID3 == '1' then AArch64.AArch32SystemAccessTrap(EL2, 0x08); elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TID3 == '1' then AArch32.TakeHypTrapException(0x08); elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TFP == '1' then if EL3SDDUndef() then UNDEFINED; else AArch64.AArch32SystemAccessTrap(EL3, 0x07); else R[t] = MVFR2; elsif PSTATE.EL == EL2 then if HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && CPTR_EL3.TFP == '1' then UNDEFINED; elsif ELIsInHost(EL2) && CPTR_EL2.FPEN == 'x0' then AArch64.AArch32SystemAccessTrap(EL2, 0x07); elsif EL2Enabled() && ((ELUsingAArch32(EL3) && SCR.NS == '1' && NSACR.cp10 == '0') || HCPTR.TCP10 == '1') then AArch32.TakeHypTrapException(0x00); elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TFP == '1' then if EL3SDDUndef() then UNDEFINED; else AArch64.AArch32SystemAccessTrap(EL3, 0x07); else R[t] = MVFR2; elsif PSTATE.EL == EL3 then if CPACR.cp10 == '00' then UNDEFINED; else R[t] = MVFR2;