← Home

AMEVCNTR1<n>: Activity Monitors Event Counter Registers 1, n = 0 - 15

Purpose

Provides access to the auxiliary activity monitor event counters.

Configuration

AArch32 System register AMEVCNTR1<n> bits [63:0] are architecturally mapped to AArch64 System register AMEVCNTR1<n>_EL0[63:0].

AArch32 System register AMEVCNTR1<n> bits [63:0] are architecturally mapped to External register AMU.AMEVCNTR1<n>[63:0].

This register is present only when FEAT_AMUv1 is implemented. Otherwise, direct accesses to AMEVCNTR1<n> are UNDEFINED.

Attributes

AMEVCNTR1<n> is a 64-bit register.

Field descriptions

6362616059585756555453525150494847464544434241403938373635343332
313029282726252423222120191817161514131211109876543210
ACNT
ACNT

ACNT, bits [63:0]

Auxiliary activity monitor event counter n.

Value of auxiliary activity monitor event counter n, where n is the number of this register and is a number from 0 to 15.

If FEAT_AMUv1p1 is implemented, HCR_EL2.AMVOFFEN is 1, SCR_EL3.AMVOFFEN is 1, the Effective value of HCR_EL2.{E2H, TGE} is not {1, 1}, EL2 is using AArch64 and is implemented in the current Security state, and AMCR_EL0.CG1RZ is 0, reads to these registers at EL0 or EL1 return (PCount<63:0> - AMEVCNTVOFF1<n>_EL2<63:0>).

PCount is the physical count returned when AMEVCNTR1<n> is read from EL2 or EL3.

If the counter is enabled, writes to this register have UNPREDICTABLE results.

The reset behavior of this field is:

Accessing AMEVCNTR1<n>

If <n> is greater than or equal to the number of auxiliary activity monitor event counters, reads and writes of AMEVCNTR1<n> are UNDEFINED.

Note

AMCGCR.CG1NC identifies the number of auxiliary activity monitor event counters.

Accesses to this register use the following encodings in the System register encoding space:

MRRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <Rt2>, <CRm> ; Where m = 0-15

coprocCRmopc1
0b11110b010:m[3]0b0:m[2:0]

integer m = UInt(CRm<0>:opc1<2:0>); if m >= NUM_AMU_CG1_MONITORS then UNDEFINED; elsif !IsG1ActivityMonitorImplemented(m) then UNDEFINED; elsif PSTATE.EL == EL0 then if HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && CPTR_EL3.TAM == '1' then UNDEFINED; elsif !ELUsingAArch32(EL1) && AMUSERENR_EL0.EN == '0' then if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then AArch64.AArch32SystemAccessTrap(EL2, 0x04); else AArch64.AArch32SystemAccessTrap(EL1, 0x04); elsif ELUsingAArch32(EL1) && AMUSERENR.EN == '0' then if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then AArch64.AArch32SystemAccessTrap(EL2, 0x04); elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then AArch32.TakeHypTrapException(0x00); else UNDEFINED; elsif EL2Enabled() && !ELUsingAArch32(EL2) && !ELIsInHost(EL0) && m >= 8 && HSTR_EL2.T5 == '1' then AArch64.AArch32SystemAccessTrap(EL2, 0x04); elsif EL2Enabled() && ELUsingAArch32(EL2) && m >= 8 && HSTR.T5 == '1' then AArch32.TakeHypTrapException(0x04); elsif EL2Enabled() && !ELUsingAArch32(EL2) && CPTR_EL2.TAM == '1' then AArch64.AArch32SystemAccessTrap(EL2, 0x04); elsif EL2Enabled() && ELUsingAArch32(EL2) && HCPTR.TAM == '1' then AArch32.TakeHypTrapException(0x04); elsif EL2Enabled() && !ELUsingAArch32(EL1) && !ELIsInHost(EL0) && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HAFGRTR_EL2.AMEVCNTR1<m>_EL0 == '1' then AArch64.AArch32SystemAccessTrap(EL2, 0x04); elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TAM == '1' then if EL3SDDUndef() then UNDEFINED; else AArch64.AArch32SystemAccessTrap(EL3, 0x04); elsif HaveAArch64() && AMCR_EL0.CG1RZ == '1' then (R[t2], R[t]) = (Zeros(32), Zeros(32)); elsif !HaveAArch64() && AMCR.CG1RZ == '1' then (R[t2], R[t]) = (Zeros(32), Zeros(32)); else (R[t2], R[t]) = (AMEVCNTR1[m]<63:32>, AMEVCNTR1[m]<31:0>); elsif PSTATE.EL == EL1 then if HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && CPTR_EL3.TAM == '1' then UNDEFINED; elsif EL2Enabled() && !ELUsingAArch32(EL2) && m >= 8 && HSTR_EL2.T5 == '1' then AArch64.AArch32SystemAccessTrap(EL2, 0x04); elsif EL2Enabled() && ELUsingAArch32(EL2) && m >= 8 && HSTR.T5 == '1' then AArch32.TakeHypTrapException(0x04); elsif EL2Enabled() && !ELUsingAArch32(EL2) && CPTR_EL2.TAM == '1' then AArch64.AArch32SystemAccessTrap(EL2, 0x04); elsif EL2Enabled() && ELUsingAArch32(EL2) && HCPTR.TAM == '1' then AArch32.TakeHypTrapException(0x04); elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TAM == '1' then if EL3SDDUndef() then UNDEFINED; else AArch64.AArch32SystemAccessTrap(EL3, 0x04); elsif !IsHighestEL(PSTATE.EL) && HaveAArch64() && AMCR_EL0.CG1RZ == '1' then (R[t2], R[t]) = (Zeros(32), Zeros(32)); elsif !IsHighestEL(PSTATE.EL) && !HaveAArch64() && AMCR.CG1RZ == '1' then (R[t2], R[t]) = (Zeros(32), Zeros(32)); else (R[t2], R[t]) = (AMEVCNTR1[m]<63:32>, AMEVCNTR1[m]<31:0>); elsif PSTATE.EL == EL2 then if HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && CPTR_EL3.TAM == '1' then UNDEFINED; elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TAM == '1' then if EL3SDDUndef() then UNDEFINED; else AArch64.AArch32SystemAccessTrap(EL3, 0x04); elsif !IsHighestEL(PSTATE.EL) && HaveAArch64() && AMCR_EL0.CG1RZ == '1' then (R[t2], R[t]) = (Zeros(32), Zeros(32)); elsif !IsHighestEL(PSTATE.EL) && !HaveAArch64() && AMCR.CG1RZ == '1' then (R[t2], R[t]) = (Zeros(32), Zeros(32)); else (R[t2], R[t]) = (AMEVCNTR1[m]<63:32>, AMEVCNTR1[m]<31:0>); elsif PSTATE.EL == EL3 then (R[t2], R[t]) = (AMEVCNTR1[m]<63:32>, AMEVCNTR1[m]<31:0>);

MCRR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <Rt2>, <CRm> ; Where m = 0-15

coprocCRmopc1
0b11110b010:m[3]0b0:m[2:0]

integer m = UInt(CRm<0>:opc1<2:0>); if m >= NUM_AMU_CG1_MONITORS then UNDEFINED; elsif !IsG1ActivityMonitorImplemented(m) then UNDEFINED; elsif PSTATE.EL == EL1 && EL2Enabled() && !ELUsingAArch32(EL2) && m >= 8 && HSTR_EL2.T5 == '1' then AArch64.AArch32SystemAccessTrap(EL2, 0x04); elsif PSTATE.EL == EL1 && EL2Enabled() && ELUsingAArch32(EL2) && m >= 8 && HSTR.T5 == '1' then AArch32.TakeHypTrapException(0x04); elsif IsHighestEL(PSTATE.EL) then AMEVCNTR1[m] = R[t2]:R[t]; else UNDEFINED;