Contiguous load non-temporal of words to multiple consecutive vectors (immediate index)
This instruction performs a contiguous non-temporal load of words to elements of two or four consecutive vector registers from the memory address generated by a 64-bit scalar base and immediate index that is multiplied by the vector's in-memory size, irrespective of predication, and added to the base address.
Inactive elements will not cause a read from Device memory or signal a fault, and are set to zero in the destination vector.
A non-temporal load is a hint to the system that this data is unlikely to be referenced again soon.
It has encodings from 2 classes: Two registers and Four registers
| 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
| 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | imm4 | 0 | 1 | 0 | PNg | Rn | Zt | 1 | ||||||||||||
| msz | N | ||||||||||||||||||||||||||||||
if !IsFeatureImplemented(FEAT_SME2) && !IsFeatureImplemented(FEAT_SVE2p1) then EndOfDecode(Decode_UNDEF); constant integer n = UInt(Rn); constant integer g = UInt('1':PNg); constant integer nreg = 2; constant integer t = UInt(Zt:'0'); constant integer esize = 32; constant integer offset = SInt(imm4);
| 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
| 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | imm4 | 1 | 1 | 0 | PNg | Rn | Zt | 0 | 1 | |||||||||||
| msz | N | ||||||||||||||||||||||||||||||
if !IsFeatureImplemented(FEAT_SME2) && !IsFeatureImplemented(FEAT_SVE2p1) then EndOfDecode(Decode_UNDEF); constant integer n = UInt(Rn); constant integer g = UInt('1':PNg); constant integer nreg = 4; constant integer t = UInt(Zt:'00'); constant integer esize = 32; constant integer offset = SInt(imm4);
| <Zt2> |
Is the name of the second scalable vector register to be transferred, encoded as "Zt" times 2 plus 1. |
| <PNg> |
Is the name of the governing scalable predicate register PN8-PN15, with predicate-as-counter encoding, encoded in the "PNg" field. |
| <Xn|SP> |
Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field. |
| <Zt4> |
Is the name of the fourth scalable vector register to be transferred, encoded as "Zt" times 4 plus 3. |
if IsFeatureImplemented(FEAT_SVE2p1) then CheckSVEEnabled(); else CheckStreamingSVEEnabled(); constant integer VL = CurrentVL; constant integer PL = VL DIV 8; constant integer elements = VL DIV esize; constant integer mbytes = esize DIV 8; bits(64) base; bits(64) addr; constant bits(PL) pred = P[g, PL]; constant bits(PL * nreg) mask = CounterToPredicate(pred<15:0>, PL * nreg); array [0..3] of bits(VL) values; constant boolean contiguous = TRUE; constant boolean nontemporal = TRUE; constant integer transfer = t; constant boolean tagchecked = n != 31; constant AccessDescriptor accdesc = CreateAccDescSVE(MemOp_LOAD, nontemporal, contiguous, tagchecked); if !AnyActiveElement(mask, esize) then if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then CheckSPAlignment(); else if n == 31 then CheckSPAlignment(); base = if n == 31 then SP[64] else X[n, 64]; addr = AddressAdd(base, offset * nreg * elements * mbytes, accdesc); for r = 0 to nreg-1 for e = 0 to elements-1 if ActivePredicateElement(mask, r * elements + e, esize) then Elem[values[r], e, esize] = Mem[addr, mbytes, accdesc]; else Elem[values[r], e, esize] = Zeros(esize); addr = AddressIncrement(addr, mbytes, accdesc); for r = 0 to nreg-1 Z[transfer+r, VL] = values[r];
This instruction is a data-independent-time instruction as described in About PSTATE.DIT.
Version 2025.09 — Copyright © 2010-2025 Arm Limited or its affiliates.
This site is provided as a community resource and is NOT affiliated with nor endorsed by Arm Limited.