Holds control information for a watchpoint. Forms watchpoint n together with value register DBGWVR<n>.
AArch32 System register DBGWCR<n> bits [31:0] are architecturally mapped to AArch64 System register DBGWCR<n>_EL1[31:0].
AArch32 System register DBGWCR<n> bits [31:0] are architecturally mapped to External register DBGWCR<n>_EL1[31:0].
This register is present only when EL1 is capable of using AArch32. Otherwise, direct accesses to DBGWCR<n> are UNDEFINED.
If watchpoint n is not implemented then accesses to this register are UNDEFINED.
DBGWCR<n> is a 32-bit register.
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
RES0 | MASK | RES0 | WT | LBN | SSC | HMC | BAS | LSC | PAC | E |
When the E field is zero, all the other fields in the register are ignored.
Reserved, RES0.
Address Mask. Only objects up to 2GB can be watched using a single mask.
MASK | Meaning |
---|---|
0b00000 |
No mask. |
0b00011..0b11111 |
Number of address bits masked. |
All other values are reserved.
Indicates the number of masked address bits, from 0b00011 masking 3 address bits (0x00000007 mask for address) to 0b11111 masking 31 address bits (0x7FFFFFFF mask for address).
If programmed with a reserved value, the watchpoint behaves as if either:
The reset behavior of this field is:
Reserved, RES0.
Watchpoint type. Possible values are:
WT | Meaning |
---|---|
0b0 |
Unlinked data address match. |
0b1 |
Linked data address match. |
The reset behavior of this field is:
Linked Breakpoint Number. For Linked data address watchpoints, this specifies the index of the Context-matching breakpoint linked to.
The reset behavior of this field is:
Security state control. Determines the Security states under which a Watchpoint debug event for watchpoint n is generated. This field must be interpreted along with the HMC and PAC fields.
For more information, see 'Execution conditions for which a watchpoint generates Watchpoint exceptions', and 'Reserved DBGWCR<n>.{SSC, HMC, PAC} values'.
The reset behavior of this field is:
Higher mode control. Determines the debug perspective for deciding when a Watchpoint debug event for watchpoint n is generated. This field must be interpreted along with the SSC and PAC fields.
For more information on the operation of the SSC, HMC, and PAC fields, see 'Execution conditions for which a watchpoint generates Watchpoint exceptions'.
The reset behavior of this field is:
Byte address select. Each bit of this field selects whether a byte from within the word or double-word addressed by DBGWVR<n> is being watched.
BAS | Description |
---|---|
0bxxxxxxx1 | Match byte at DBGWVR<n> |
0bxxxxxx1x | Match byte at DBGWVR<n>+1 |
0bxxxxx1xx | Match byte at DBGWVR<n>+2 |
0bxxxx1xxx | Match byte at DBGWVR<n>+3 |
In cases where DBGWVR<n> addresses a double-word:
BAS | Description, if DBGWVR<n>[2] == 0 |
---|---|
0bxxx1xxxx | Match byte at DBGWVR<n>+4 |
0bxx1xxxxx | Match byte at DBGWVR<n>+5 |
0bx1xxxxxx | Match byte at DBGWVR<n>+6 |
0b1xxxxxxx | Match byte at DBGWVR<n>+7 |
If DBGWVR<n>[2] == 1, only BAS[3:0] are used and BAS[7:4] are ignored. Arm deprecates setting DBGWVR<n>[2] == 1.
The valid values for BAS are nonzero binary numbers all of whose set bits are contiguous. All other values are reserved and must not be used by software. See 'Reserved DBGWCR<n>.BAS values'.
The reset behavior of this field is:
Load/store control. This field enables watchpoint matching on the type of access being made. Possible values of this field are:
LSC | Meaning |
---|---|
0b01 |
Match instructions that load from a watchpointed address. |
0b10 |
Match instructions that store to a watchpointed address. |
0b11 |
Match instructions that load from or store to a watchpointed address. |
All other values are reserved, but must behave as if the watchpoint is disabled. Software must not rely on this property as the behavior of reserved values might change in a future revision of the architecture.
The reset behavior of this field is:
Privilege of access control. Determines the Exception level or levels at which a Watchpoint debug event for watchpoint n is generated. This field must be interpreted along with the SSC and HMC fields.
For more information on the operation of the SSC, HMC, and PAC fields, see 'Execution conditions for which a watchpoint generates Watchpoint exceptions'.
The reset behavior of this field is:
Enable watchpoint n. Possible values are:
E | Meaning |
---|---|
0b0 |
Watchpoint disabled. |
0b1 |
Watchpoint enabled. |
The reset behavior of this field is:
Accesses to this register use the following encodings in the System register encoding space:
MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>} ; Where m = 0-15
coproc | opc1 | CRn | CRm | opc2 |
---|---|---|---|---|
0b1110 | 0b000 | 0b0000 | m[3:0] | 0b111 |
integer m = UInt(CRm<3:0>); if m >= NUM_WATCHPOINTS then UNDEFINED; elsif PSTATE.EL == EL0 then UNDEFINED; elsif PSTATE.EL == EL1 then if HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then UNDEFINED; elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.<TDE,TDA> != '00' then AArch64.AArch32SystemAccessTrap(EL2, 0x05); elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.<TDE,TDA> != '00' then AArch32.TakeHypTrapException(0x05); elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then if EL3SDDUndef() then UNDEFINED; else AArch64.AArch32SystemAccessTrap(EL3, 0x05); elsif DBGOSLSR.OSLK == '0' && HaltingAllowed() && EDSCR.TDA == '1' then Halt(DebugHalt_SoftwareAccess); else R[t] = DBGWCR[m]; elsif PSTATE.EL == EL2 then if HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then UNDEFINED; elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then if EL3SDDUndef() then UNDEFINED; else AArch64.AArch32SystemAccessTrap(EL3, 0x05); elsif DBGOSLSR.OSLK == '0' && HaltingAllowed() && EDSCR.TDA == '1' then Halt(DebugHalt_SoftwareAccess); else R[t] = DBGWCR[m]; elsif PSTATE.EL == EL3 then if DBGOSLSR.OSLK == '0' && HaltingAllowed() && EDSCR.TDA == '1' then Halt(DebugHalt_SoftwareAccess); else R[t] = DBGWCR[m];
MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>} ; Where m = 0-15
coproc | opc1 | CRn | CRm | opc2 |
---|---|---|---|---|
0b1110 | 0b000 | 0b0000 | m[3:0] | 0b111 |
integer m = UInt(CRm<3:0>); if m >= NUM_WATCHPOINTS then UNDEFINED; elsif PSTATE.EL == EL0 then UNDEFINED; elsif PSTATE.EL == EL1 then if HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then UNDEFINED; elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.<TDE,TDA> != '00' then AArch64.AArch32SystemAccessTrap(EL2, 0x05); elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.<TDE,TDA> != '00' then AArch32.TakeHypTrapException(0x05); elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then if EL3SDDUndef() then UNDEFINED; else AArch64.AArch32SystemAccessTrap(EL3, 0x05); elsif DBGOSLSR.OSLK == '0' && HaltingAllowed() && EDSCR.TDA == '1' then Halt(DebugHalt_SoftwareAccess); else DBGWCR[m] = R[t]; elsif PSTATE.EL == EL2 then if HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then UNDEFINED; elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then if EL3SDDUndef() then UNDEFINED; else AArch64.AArch32SystemAccessTrap(EL3, 0x05); elsif DBGOSLSR.OSLK == '0' && HaltingAllowed() && EDSCR.TDA == '1' then Halt(DebugHalt_SoftwareAccess); else DBGWCR[m] = R[t]; elsif PSTATE.EL == EL3 then if DBGOSLSR.OSLK == '0' && HaltingAllowed() && EDSCR.TDA == '1' then Halt(DebugHalt_SoftwareAccess); else DBGWCR[m] = R[t];