← Home

CNTP_CTL: Counter-timer Physical Timer Control register

Purpose

Control register for the EL1 physical timer.

Configuration

This register is banked between CNTP_CTL and CNTP_CTL_S and CNTP_CTL_NS.

AArch32 System register CNTP_CTL bits [31:0] are architecturally mapped to AArch64 System register CNTP_CTL_EL0[31:0].

This register is present only when AArch32 is supported. Otherwise, direct accesses to CNTP_CTL are UNDEFINED.

Attributes

CNTP_CTL is a 32-bit register.

This register has the following instances:

Field descriptions

313029282726252423222120191817161514131211109876543210
RES0ISTATUSIMASKENABLE

Bits [31:3]

Reserved, RES0.

ISTATUS, bit [2]

The status of the timer. This bit indicates whether the timer condition is met:

ISTATUSMeaning
0b0

Timer condition is not met.

0b1

Timer condition is met.

When the value of the ENABLE bit is 1, ISTATUS indicates whether the timer condition is met. ISTATUS takes no account of the value of the IMASK bit. If the value of ISTATUS is 1 and the value of IMASK is 0 then the timer interrupt is asserted.

When the value of the ENABLE bit is 0, the ISTATUS field is UNKNOWN.

The reset behavior of this field is:

Access to this field is RO.

IMASK, bit [1]

Timer interrupt mask bit. Permitted values are:

IMASKMeaning
0b0

Timer interrupt is not masked by the IMASK bit.

0b1

Timer interrupt is masked by the IMASK bit.

For more information, see the description of the ISTATUS bit.

The reset behavior of this field is:

ENABLE, bit [0]

Enables the timer. Permitted values are:

ENABLEMeaning
0b0

Timer disabled.

0b1

Timer enabled.

Setting this bit to 0 disables the timer output signal, but the timer value accessible from CNTP_TVAL continues to count down.

Note

Disabling the output signal might be a power-saving option.

The reset behavior of this field is:

Accessing CNTP_CTL

Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coprocopc1CRnCRmopc2
0b11110b0000b11100b00100b001

if PSTATE.EL == EL0 then if !ELUsingAArch32(EL1) && !ELIsInHost(EL0) && CNTKCTL_EL1.EL0PTEN == '0' then if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then AArch64.AArch32SystemAccessTrap(EL2, 0x03); else AArch64.AArch32SystemAccessTrap(EL1, 0x03); elsif ELUsingAArch32(EL1) && CNTKCTL.PL0PTEN == '0' then if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then AArch64.AArch32SystemAccessTrap(EL2, 0x03); elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then AArch32.TakeHypTrapException(0x00); else UNDEFINED; elsif EL2Enabled() && !ELUsingAArch32(EL2) && !ELIsInHost(EL2) && CNTHCTL_EL2.EL1PCEN == '0' then AArch64.AArch32SystemAccessTrap(EL2, 0x03); elsif ELIsInHost(EL2) && HCR_EL2.TGE == '0' && CNTHCTL_EL2.EL1PTEN == '0' then AArch64.AArch32SystemAccessTrap(EL2, 0x03); elsif ELIsInHost(EL0) && CNTHCTL_EL2.EL0PTEN == '0' then AArch64.AArch32SystemAccessTrap(EL2, 0x03); elsif EL2Enabled() && ELUsingAArch32(EL2) && CNTHCTL.PL1PCEN == '0' then AArch32.TakeHypTrapException(0x03); elsif ELIsInHost(EL0) && SCR_EL3.NS == '0' && IsFeatureImplemented(FEAT_SEL2) then R[t] = CNTHPS_CTL_EL2<31:0>; elsif ELIsInHost(EL0) && SCR_EL3.NS == '1' then R[t] = CNTHP_CTL_EL2<31:0>; else R[t] = CNTP_CTL; elsif PSTATE.EL == EL1 then if EL2Enabled() && !ELUsingAArch32(EL2) && !ELIsInHost(EL2) && CNTHCTL_EL2.EL1PCEN == '0' then AArch64.AArch32SystemAccessTrap(EL2, 0x03); elsif ELIsInHost(EL2) && CNTHCTL_EL2.EL1PTEN == '0' then AArch64.AArch32SystemAccessTrap(EL2, 0x03); elsif EL2Enabled() && ELUsingAArch32(EL2) && CNTHCTL.PL1PCEN == '0' then AArch32.TakeHypTrapException(0x03); elsif HaveEL(EL3) && ELUsingAArch32(EL3) then R[t] = CNTP_CTL_NS; else R[t] = CNTP_CTL; elsif PSTATE.EL == EL2 then if HaveEL(EL3) && ELUsingAArch32(EL3) then R[t] = CNTP_CTL_NS; else R[t] = CNTP_CTL; elsif PSTATE.EL == EL3 then if SCR.NS == '0' then R[t] = CNTP_CTL_S; else R[t] = CNTP_CTL_NS;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coprocopc1CRnCRmopc2
0b11110b0000b11100b00100b001

if PSTATE.EL == EL0 then if !ELUsingAArch32(EL1) && !ELIsInHost(EL0) && CNTKCTL_EL1.EL0PTEN == '0' then if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then AArch64.AArch32SystemAccessTrap(EL2, 0x03); else AArch64.AArch32SystemAccessTrap(EL1, 0x03); elsif ELUsingAArch32(EL1) && CNTKCTL.PL0PTEN == '0' then if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then AArch64.AArch32SystemAccessTrap(EL2, 0x03); elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then AArch32.TakeHypTrapException(0x00); else UNDEFINED; elsif EL2Enabled() && !ELUsingAArch32(EL2) && !ELIsInHost(EL2) && CNTHCTL_EL2.EL1PCEN == '0' then AArch64.AArch32SystemAccessTrap(EL2, 0x03); elsif ELIsInHost(EL2) && HCR_EL2.TGE == '0' && CNTHCTL_EL2.EL1PTEN == '0' then AArch64.AArch32SystemAccessTrap(EL2, 0x03); elsif ELIsInHost(EL0) && CNTHCTL_EL2.EL0PTEN == '0' then AArch64.AArch32SystemAccessTrap(EL2, 0x03); elsif EL2Enabled() && ELUsingAArch32(EL2) && CNTHCTL.PL1PCEN == '0' then AArch32.TakeHypTrapException(0x03); elsif ELIsInHost(EL0) && SCR_EL3.NS == '0' && IsFeatureImplemented(FEAT_SEL2) then CNTHPS_CTL_EL2 = R[t]; elsif ELIsInHost(EL0) && SCR_EL3.NS == '1' then CNTHP_CTL_EL2 = R[t]; else CNTP_CTL = R[t]; elsif PSTATE.EL == EL1 then if EL2Enabled() && !ELUsingAArch32(EL2) && !ELIsInHost(EL2) && CNTHCTL_EL2.EL1PCEN == '0' then AArch64.AArch32SystemAccessTrap(EL2, 0x03); elsif ELIsInHost(EL2) && CNTHCTL_EL2.EL1PTEN == '0' then AArch64.AArch32SystemAccessTrap(EL2, 0x03); elsif EL2Enabled() && ELUsingAArch32(EL2) && CNTHCTL.PL1PCEN == '0' then AArch32.TakeHypTrapException(0x03); elsif HaveEL(EL3) && ELUsingAArch32(EL3) then CNTP_CTL_NS = R[t]; else CNTP_CTL = R[t]; elsif PSTATE.EL == EL2 then if HaveEL(EL3) && ELUsingAArch32(EL3) then CNTP_CTL_NS = R[t]; else CNTP_CTL = R[t]; elsif PSTATE.EL == EL3 then if SCR.NS == '0' then CNTP_CTL_S = R[t]; else CNTP_CTL_NS = R[t];